Lognormal distribution Probabilities

Calculator of Lognormal distribution : probabilities, density function (PDF) and cumulative density function (CDF).

> 0
> 0
(optional) b > a


Lognormal Distribution formulas

X : a random variable following a lognormal distribution
`mu` : first parameter
`sigma` : second parameter ( > 0)

Probability Density Function (PDF)

`f(x) = 1/(x*sigma*sqrt(2*pi))*exp(-(ln(x)-mu)^2/(2*sigma^2))`   for `x > 0`

Cumulative distribution function (CDF)

`F(x) = \int_0^x f(t)\ dt`

`F(x) = 1/2*(1+\text{erf}((ln(x)-mu)/(sigma*sqrt(2))))`   for `x > 0`

where erf is the Error function,

`\text{erf}(x) = 2/sqrt(pi)*\int_0^x e^(-t^2)\ dt`

Probabilities

Probability that X is greater than a :
`P(X > a) = 1 - F(a)`

Probability that X is less than b :
`P(X < b) = F(b)`

Probability that X lies between a and b :
`P(a < X < b) = F(b) - F(a)`

See also

Inverse Lognormal distribution
Lognormal distribution Chart
Statistics Calculators